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ABSTRACT

The study of the formation and growth of thermal plumes is motivated by the

proposed existence of such plumes in the Earth's mantle. During the initial stages of

plume development, a plume consists of a large buoyant ball trailing a narrow feeder

conduit. This study presents laboratory, analytical, and numerical models of this

flow. The experimental model generates the plumes using a heater in a syrup whose

viscosity is highly temperature-dependent. The resulting data provides a measure of

the effectiveness of the analytical and numerical models. The analytical model,

based on mass and energy conservation, shows a significant improvement in the flow

prediction compared to previous models. The numerical model uses the finite-

element method to produce a flow solution that successfully predicts the flow to

within the experimental error.

ix



CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The initiation and development of creeping thermal plumes in a medium

whose viscosity is highly temperature-dependent presents an interesting and

challenging problem in low Reynolds number flow. The problem gains increased

significance, however, when considering the application of such flow to geophysical

fluid dynamics and mantle convection.

Three methods of investigation were used to researcn this problem:

experimental, numerical, and analytical. A brief description of the experimental

apparatus will serve to provide a concrete example of the problem. A large container

was filled with a thick corn syrup whose viscosity varies greatly with temperature.

A small heater placed in the bottom of the container provided the heat input to

generate a thermally buoyant plume which formed with a balloon-on-a-string shape

(figures 4c, 5c). We call this plume structure a starting plume. The goal of this

project was to predict analytically and numerically the motion of the fluid in the

tank. Of particular interest was the rise time of the plume.

This problem provides a first-approximation model of deep Earth-mantle

plumes. Morgan (1971) first proposed the existence of mantle plumes extending from

the deep mantle to the asthenosphere. While several regions have been suggested as

the source of mantle plumes, the most plausible appears to be the D" layer (Stacey

and Loper, 1983). Seismic studies have identified the D" layer as a distinct layer at
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the base of the mantle. Yuen and Peltier (1980) used linear stability analysis to show

that for a wide range of conditions, the D" layer is dynamically unstable. They

postulated that this instability could evolve into deep mantle plumes. Stacey and

Loper (1983) modelled the D" layer as a dynamically active layer with a flow pattern

that is distinct from that in the lower mantle. This layer, maintained by the heat

flux from the core, provides a source of buoyant, low viscosity fluid for plume

activity. At the high pressures and temperatures in the Earth's interior, the rock-like

mantle exhibits fluid properties. A key characteristic of the mantle material is its

highly temperature-dependent viscosity. The corn syrup in the experimental tank,

then, represents the Earth's mantle. The heater is the core and the heated fluid layer

just above the heater is the D" layer. While this crude model neglects many

complicating factors such as a stably-stratified mantle, this problem serves as a good

initial step in the solution of the larger, more complicated problem.

1.2 Literature Review

Most of the previous work has concentrated on specific aspects of the problem

of plume initiation and growth; few have attempted to integrate these aspects. The

efforts may be grouped into two categories: experimental/analytical investigations

and numerical investigations.

1.2.1 Experimental/Analytical Investigations

The earliest experimental/analytical effort appears to be that of Whitehead

and Luther (1975). Many of the results were summarized in Whitehead (1986). Their

experiment involved injecting a less dense, less viscous fluid into a denser, more

viscous fluid. The viscosity contrast ( lsrge/Asmal) of the two fluids was 6 x l03.

They found that a ball formed on the spout of the injector, and then lifted off from

the spout, trailing a thin feeder conduit. This structure is very similar to that
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observed in the research experiment. One key difference in the experiments is that

Whitehead and Luther (1975) used two immiscible fluids, so no diffusion occurred.

They developed an analytical model for speed, height and radius of the ball of the

plume as a function of time, which predicts that height varies as t513 . Their

experimental results showed good quantitative agreement with the model.

A similar study is that of Olson and Singer (1985). They also continuously

injected a less dense, less viscous fluid into a more viscous, denser fluid, but they

formed the less dense fluid by diluting the denser fluid (glucose syrup) with water

forming a plume of miscible fluid. They found experimentally that height varied as

t7/ 5 and that the plume rose slower than for the Whitehead and Luther (1975) case.

This slower rate may be due to diffusion. Note that the compositional diffusion of

the Olson and Singer (1985) experiment is very slow relative to the thermal diffusion

of the experiment in the current study.

Diffusion of buoyancy is a key factor in the thermal plume problem, as

indicated in the research of Morris (1982) and Ansari and Morris (1985). These

studies isolated the effects of strongly temperature-dependent viscosity on slow flow

past a rigid sphere. These investigations were motivated by the observation that a

sphere of hot magma would require a time equivalent to the Earth's age to move

through the lithosphere in a Stokes-flow regime. Morris showed that if a rigid

sphere is maintained at a high temperature in a medium with highly temperature-

dependent viscosity, then it will transfer heat to the surrounding medium and create

a lower viscosity path for the sphere to follow. In this 'lubrication limit', the sphere

moves faster than in Stokes flow. In fact, Morris found for the lubrication limit that

a smaller sphere rises faster than a larger sphere, an effect opposite to Stokes flow.

This result was confirmed experimentally by Ribe (1983). Ribe also determined that

the ascent speed will increase by 25% (for Stokes flow) to 100% (lubrication limit)
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for each order-of-magnitude change in viscosity contrast. These results show that a

sphere of magma would rise faster than predicted by Stokes flow, if the temperature

of the sphere were constant. In reality, such a sphere would cool quickly and stop its

upward motion.

Griffiths (1986a-d) made an experimental investigation that also concentrated

on the effects of diffusion. In contrast to the continuously injected plumes of

Whitehead and Luther (1975) and Olson and Singer (1985), he injected a fixed

volume of warmer oil into a larger container of the same oil at a lower temperature.

These 'thermals' grew in size due to entrainment of the ambient fluid, while the

speed decreased with time. By assuming that all of the heated ambient fluid is

entrained (i.e., buoyancy is conserved), Griffiths developed analytical expressions

indicating that height varied as t 1 / 2 and speed varied as t - 12/ . This rise law agreed

qualitatively and quantitatively with his experimental results.

Recent work by Griffiths and Campbell (1990) more closely models the

proposed experimental study. This work also represents the first attempt to integrate

all aspects of the thermal-plume problem. They injected a continuous stream of

warmer, less viscous fluid into an overlying layer of more dense, more viscous fluid.

By assuming that all of the heated ambient fluid is entrained, they developed a rise

law predicting that the height of the plume would vary as ts / 4 . Although this

assumption is not physically realistic, they stated that this rise law adequately

predicted their experimental results, but presented no data to support this statement.

1.2.2 Numerical Investigations

Just as the previous experimental/analytical work isolated various factors of

the plume flow, much of the numerical work emphasized selected physical

phenomena. Some of the numerical work, however, attempts to attack the full

problem in methods similar to the proposed research. Table I summarizes the
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Table 1. Comparison of related numerical studies.

Name Scheme I Domain I Ra I Note

Parmentier (75) FDM axisym 1os 101- steady
101 state

Daly and FEM axisym 0 l01 rigid
Raefsky (85) sphere

Schubert and FEM planar 107 n/a constant
Anderson (85) viscosity

Jarvis (84) FDM planar l08 n/a constant
viscosity

Boss and FDM planar 107 20 stream
Sacks (85) funct-

ion

Olson, Schubert, FEM planar 104 l0 s-
Anderson (87) 104

Zhao and FEM planar 10r  100 viscous
Yuen (87) axisym heating

characteristics of previous related numerical work. Both finite-difference methods

and finite-element studies are described in the literature. In general, the more recent

works prefer the finite-element method due to the grid flexibility which allows high

resolution in the boundary layers that commonly occur in such flows. Sato and

Thompson (1976) discuss some of the specific advantages of the finite-element

method for this application. Parmentier, et al. (1975) made the first significant

numerical study on the structure of mantle plumes. They used a finite-difference

method, which incorporated the Boussinesq approximation and an infinite-Prandtl-

number (Pr) assumption, to solve the steady-state axisymmetric problem. They

solved the energy and vorticity transport equations containing two parameters,

Rayleigh number (Ra) and viscosity contrast (a) where:

where:
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uagA77h3  PRa= Pg~s r=- '  ILC

VK X IA

a is the coefficient of thermal expansion

g is the acceleration of gravity

AT is the temperature difference

h is the height

K is the thermal diffusivity

Pr is the reference dynamic viscosity of the cold

fluid

p is the dynamic viscosity of the hot fluid

vr is the reference kinematic viscosity of cold

fluid.

Although they assumed flow was restricted to the upper mantle (700 kin), some of

their conclusions are equally valid for deep mantle plumes. They found, for

instance, that the medium must be heated at the base for plumes to occur; internal

heating would not produce the narrow structure. They also showed that variable

viscosity was necessary for narrow plumes. Finally, they investigated the effect of

varying the Rayleigh number from 10 to 10'. They showed that as the Rayleigh

number increased, the plume neck width decreased.

Daly and Raefsky (1985) performed a numerical study of the situation

described asymptotically by Morris (1982) and experimentally by Ribe (1983), i.e.,

the motion of a rigid sphere in a highly temperature-dependent medium. They used

a finite-element method on the momentum and energy equations, incorporating some

of the same assumptions as Parmentier, et al. (1975), specifically the Boussinesq

approximation and infinite-Prandtl-number assumption, but they included time
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dependency in the energy equation. They also, incidentally, used a primitive-

variable approach with a penalty-function formulation in place of the vorticity

approach. Their results showed excellent agreement with the results of Morris

(1982), Ribe (1983), and Ansari and Morris (1983). Additionally, they were able to

investigate a wider parameter range: viscosity variation up to 105 and Peclet number

(Pc) from 10-1 to 103, where

P a
K

where:

U is the speed of the sphere

a is the sphere radius.

Daly and Raefsky (1985) assumed the fluid was mechanically driven for their work.

They concluded that although the drag reduces with viscosity variation (as compared

to Stokes flow with constant viscosity), the heat transport is also more efficient, so a

blob of magma will not rise farther than a diameter or two through the mantle or

lithosphere without cooling to ambient levels.

Many studies concentrate on overall mantle convection but don't investigate

plume structure in detail. Several studies, while concentrating on overall mantle

convection, mention the role of plumes in their results. Schubert and Anderson

(1985) investigated two-dimensional convection with heating from below as well as

internal heating at high Rayleigh numbers using the finite-element method. They

compare their results favorably with earlier finite-difference studies of Jarvis and

Peltier (1982). While they made progress in using a high Rayleigh number that

would be typical of whole-mantle convection, their model assumed constant viscosity

in the mantle. Jarvis (1984) was able to study flow at even higher Rayleigh numbers
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using a finite-difference method and a stream-function approach to the two-

dimensional problem, but he also assumed constant viscosity. He also concentrated

on behavior of developed plumes, not plume initiation.

Four papers are most closely related to the numerical approach used in this

research. They each make the Boussinesq approximation and infinite Prandtl

number assumption in a two-dimensional planar domain. As demonstrated by the

common occurrence of these assumptions in the papers described earlier, these

assumptions are well accepted for models of mantle convection. Boss and Sacks

(1985) solve a stream-function formulation of the problem with a finite-difference

method. They initiated plumes by introducing a perturbation into broad-scale

mantle convection as well as a static mantle, in an attempt to determine which core-

mantle boundary perturbations produced plumes. They concluded that deep-mantle

plumes require 50-100 my to penetrate the mantle. This time scale was confirmed by

Christensen's (1984) study. Olson, Schubert and Anderson (1987) use a finite-element

code to model plume initiation in the lower mantle, with viscosity contrasts of 103

and 104. Zhao and Yuen (1987) introduced another phenomenon by studying the

effects of adiabatic and viscous heating on plumes. They also are the only authors to

use an axisymmetric finite-element formulation in addition to a two-dimensional

Cartesian formulation for the time-dependent problem. They found that for a

uniform thermal expansivity, a, an increase in the adiabatic and viscous heating

contributions impedes plume growth. Only with a decreasing with depth does plume

structure return in this model. They also observed that the same plume structure

appears in the Cartesian two-dimensional and axisymmetric cases, the only

quantitative difference being that the temperature in the center of the plume is

slightly higher in the two-dimensional case than in the axisymmetric case.



CHAPTER 2

EXPERIMENTAL INVESTIGATION

2.1 Purpose

The goal of the experimental study was to measure the rise speed and to

observe the development of starting thermal plumes. As indicated in the literature

review, a key aspect of this study was the combination of the buoyancy effects seen

in the continuously-fed compositional plume studies of Whitehead and Luther (1975)

and Olson and Singer (1985) with the entrainment effects demonstrated by the pulse-

fed 'thermals' of Griffiths (1986a-d). Griffiths and Campbell (1990) first studied

this combination of buoyancy and diffusive effects experimentally. The current

experimental work differs from theirs in two ways: the plumes are generated via

thermal input rather than mass input and the viscosity contrast between the fluids is

larger than their case. This work at higher viscosity contrasts may be helpful in

drawing conclusions about plume behavior at the very large viscosity contrasts

which may occur in the mantle.

2.2 Apparatus

The spherical caps of thermally generated starting plumes have larger

diameter than those of compositionally generated plumes (Olson and Singer, 1985).

This difference is due to the larger value of thermal diffusivity as compared to

compositional diffusivity and the resulting entrainment described by Griffiths

9
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(1986a-d). Thus, compositional plumes may be studied in a smaller container with

minimal wall effects. For the present study, wall effects are minimized for thermal

plumes by using a large tank (figure 1).

The tank (designed to be the maximum size that will move through a standard

doorway) has dimensions 78.8 X 78.8 X 69.4 cm high. The plume was generated by a

62.2 mm diameter thermo-foil heater which has 265 ohm resistance. The heater was

mounted on a metal block; a 7 mm thick layer of plexiglass separated the heater

from the block. Vertical length scales on the front and rear of the tank provided a

means of measuring the plume height from the photographic record of the

experiment.

Table 2. Physical properties of syrup.

thermal diffusivity 2.2 x 10-3 cm 2 /sec

specific heat .7 cal/gm/deg

thermal expansion @22C 3.5 x 10 -4 deg-'

thermal expansion @40C 4.5 x 10 -4 deg-1

density @-26.1C 1.45 g/em3

density @.IC 1.43 g/cm s

density @25C 1.42 g/cm3

density @100C 1.39 g/cm S

dynamic viscosity @-26.1C 2.59 x 1010 mPa-sec

dynamic viscosity @.IC 7.4 x 106 mPa-sec

dynamic viscosity @25C 91104 mPa-sec

dynamic viscosity @I00C 223.9 mPa-sec

The fluid used in the tank was ADM 36/43 industrial corn sweetener. A

summary of some of its important physical properties is given in table 2. This syrup

has a highly temperature-dependent viscosity (figure 2), a key characteristic of



78 cm

4' ~ ~ ..... ... .. . . ... *
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Figure 1. Experimental apparatus.
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mantle material. The table also indicates a significant change in the thermal

expansion coefficient with temperature. For simplification in analytical and

numerical modelling, however, we assumed a constant value for each case. Another

useful property of this syrup is that when heated in the experiment, many small

vapor bubbles form, apparently the residual of larger bubbles that formed on the

surface of the heater and quickly collapsed as they migrated away from the heater.

These remnants serve as excellent tracers for flow visualization, yet they do not

appear to affect the flow properties. This observation has also been noted by Ansari

and Morris (1985). If these bubbles occupied a large percentage volume of the

plume, then they would significantly reduce the density in the plume. The

experimental photographs indicate, however, that these bubbles probably do not

occupy a significant volume percentage. This assumption is based on the observation

that one can see through the syrup/bubble mixture fairly easily. A large percentage

of bubbles would obscure the view. As a result, we do not account for bubble

density in the plume density calculations.

2.3 Procedure

The continuous-feed experiments involved setting the heater to full power in

the tank of quiescent, isothermal syrup. The record of the ball shape, volume and

height as a function of time was kept photographically (figures 4c, 5c, and 6b). The

experiments were run repeatedly for various viscosity contrasts, which were induced

by changing the ambient temperature of the tank. Three convenient environments

existed to run the experiment with different viscosity contrasts. One, of course, was

room temperature. This environment had an ambient temperature of 24.8C and this

temperature generated a viscosity contrast (Acold/Phot) of 406.9. The other two

environments come as a result of access to the National Science Foundation's
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Iog(viscosity) log(mPa-sec)
2 -2.1 C 1 oberved

10* 0.1 C

least aqiares fit 25.0 C

6

4

2

-40 -20 0 20 40 60 80 100 120
temp (C)

-4- observed - least squares fit

Figure 2. Viscosity variation with temperature for syrup. Least squares fit
equation is log 0( p)m2O.6- 14.99(1 OOO/T)+3.0762( 1 OOO/T)2
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Antarctic Marine Research Facility on the campus of Florida State University. This

facility has large cold storage areas that will accommodate the tank. One storage

area is maintained at IC, generating a viscosity contrast of 3.3 X i0 4. A smaller

storage area, maintained at -26.IC, generates a viscosity contrast of 1.1 X l0". For

comparison, note that the Griffiths and Campbell (1990) experiments used a

maximum viscosity contrast of 333.

In addition to the continuous-feed cases that were run at different viscosities,

a control pulse-feed case was run at ambient temperature of .IC. In this case, the

heater was turned off as soon as the sphere formed above the heater, just before the

time when the ball would rise away from the heater, trailing a narrow neck in the

continuous-feed case. (We define this time as the liftoff time.) This case was very

similar to the experimental study of 'thermals' made by Griffiths (1986a-d) in which

he injected a fixed volume of warmer fluid into the ambient fluid. Comparison of

the results to those of Griffiths (1986a-d) provided a good test of the experimental

apparatus and procedure.

2.4 Results

The results of the control pulse-feed case are presented in figure 3a. A

photograph of the typical structure of the thermal is shown in figure 3b. The

general agreement of these results with those of Griffiths (1986a-d) indicates that

the experimental apparatus and procedure were adequate. Furthermore, this

agreement suggests that plume formation via thermal input (heater) occurs similarly

to plume formation via injection of warmer fluid as in Griffiths (1986a-d) and

Griffiths and Campbell (1990).

Typical results for the continuous-feed cases for all three environments are

given in figures 4, 5, and 6. The most accurate measurements were those of height
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versus time. These results are given in figures 4a, 5a, and 6a. The measurements of

volume versus time are much less accurate; these results are given in figures 4b and

5b. Corresponding photographs of the typical structures in each environment are

shown in figures 4c, 5c, and 6b. Along with the experimental results, plots of the

rise laws of Whitehead and Luther (1975), Olson and Singer (1985), and Griffiths and

Campbell (1990) are included in figures 4a, 4b, 5a, 5b, and 6a. Note the error bars on

the graphs. The agreement of these rise laws with the experimental data depends

largely upon where the plot begins. In order to have a fair comparison, the plot of

each rise law starts at the liftoff time and passes through the first two observational

points. These plots provide a graphical means of comparing the effectiveness of the

rise laws. Additionally, table 3 provides a quantitative means of comparing these

models (using height vs. time data). By computing the experimental standard

deviation of the least-squares fit for each rise law, a numerical value may be

assigned which indicates how well each rise law models the experimental result.

Note that these results represent curves that are different from those in figures 4a,

5a, and 6a. The continuous-feed case with viscosity contrast of 1.1 X 108 shown in

figure 6a and 6b displayed a different morphology than previous cases; the ball

never lifted away from the heater.

The graphical comparison of these plots with the experimental data and the

results presented in table 3 lead to a few observations. First, the rise law of

Whitehead and Luther (1975) is the poorest model of the experimental data. This

poor performance is expected, however, since Whitehead and Luther did not

incorporate any diffusive effects in their model, nor should they since they were

dealing with immiscible fluids. Griffiths' (1986a-d) work clearly shows that

diffusion and subsequent entrainment of ambient fluid accelerate the growth of the

sphere and slow the sphere rise when compared to the no diffusion case, so
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Figure3a. Results of pulse feed experiment.
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Figurc 3b. Typical structure of pulsc fccd diapir.
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Figure 4a. Height vs. time, Tamb'025C.
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r the thermal plume will result in larger rise speeds. The

75) law, consequently, shows an increasing speed since the

)y the slowing effects of diffusion. The volume of the ball

mailer for this case since their model only accounts for the

nduit, i. e., no ambient material is entrained. The rise law

) performs better than that of Whitehead and Luther

Jequate. Their rise law is based on experimental

)nal analysis, and does not consider the dynamics of the

plumes were generated using a compositional difference of

did not include compositional diffusion -i, a factor in their

eir experimental results, howeve-, .l-,Gwed some slowing and

to the Whitehead and Luthei (1975) rise law. These

,mall amount of compositional diffusion between the two

al diffusion is a slow process relative to thermal diffusion,

ly, the best model to date is that of Griffiths and Campbell

the effect of thermal diffusion. A key assumption of

,hat all of the heat diffusing from the ball is re-entrained in

ves the ball. Their model predicts a higher speed and a

time than the experimental results indicate, as shown in

ble 3 lists the minimum standard deviation for an

exponential rise law is one where height - time 1. Each of

ws is an exponential rise law ( = 5/3 for

'5 for Olson/Singer, and t = 5/4 for Griffiths/Campbell).

the exponential rise law that predicts the experimental

as = 1.047. For the Tamb - 0. 1C case, = 1.125, and for
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Table 3. Quantitative model comparison.

MODEL STANDARD DEVIATION

Tamb= 2 5 C TambfOfi.1C Tamb=.26.1

Whitehead/Luther 1.44602 1.02836 3.47298

Olson/Singer .94595 .60531 2.87026

Grif fiths/Campbell .69916 .40745 2.5039

optimal exponential .5304 .3348 .17538

the Tamb = -26.1C case, = .3743. The Olson and Singer (1985) experimental rise law

gives a 54% improvement (for the Tnab = 25c case) and 61% improvement (for the

Tamb = 0.1C case) over the Whitehead and Luther (1975) rise law when compared to

this optimal exponential case. The Griffiths and Campbell (1990) addition of

diffusion to the model shows a larger improvement in the model's performance when

compared to these optimal exponential rise laws. Their model accounted for 81.6%

(in the Tamb = 25C case) and 89.5% (in the Tamb = 0.IC case) of the difference

between the Whitehead and Luther (1975) model and the best exponential rise law.

Note that for the Tamb = -26.1C case, the Olson and Singer (1985) rise law shows an

18.2% improvement over the Whitehead and Luther (1975) prediction. The Griffiths

and Campbell (1990) model gives an improvement of 29%, but the relatively large

standard deviations in all the models indicate that none of the previously developed

rise laws is adequate for this case.

These results show the importance of including diffusive effects in an

analytical model of plume rise. They also indicate the possibility of improving the

model by relaxing some of the assumptions used by Griffiths and Campbell (1990).

Figure 6b suggests that their assumption of total heat entrainment may be too strong.

In this Tamb "-26.1C case, clearly much of the heat input to the plume is lost from
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the 'ball'. This result suggests that, to a lesser degree, some heat may be lost from the

ball in the other two cases. A logical step for improving their model is to relax this

assumption.



CHAPTER 3

ANALYTICAL MODELLING

3.1 Key Physical Interactions

One of the major reasons for performing an experimental investigation of

this problem was to develop some sense of the important physical interactions that

occur in plume initiation and development. The experimental results clearly

indicate that one important interaction is thermal diffusion and entrainment. The

hot fluid rising from the heater heats the ambient fluid and entrains some of it into

the sphere. Griffiths (1986a-d) showed that this entrainment alone causes the sphere

to grow in size and slow in speed as time progresses. In the experimental results of

chapter 2 (figures 4a and 5a), the performance of the model that included diffusion

(Griffiths and Campbell, 1990) was superior to the models that neglected diffusion

(Whitehead and Luther, 1975; Olson and Singer, 1985). Another important

interaction that the experiment illustrated was heat loss. In the Tmb = -26.IC case

(figure 6b), a large fraction of heat was lost from the 'ball'. This factor may also

play a significant role in the cases with smaller viscosity contrast.

The complications introduced by these interactions make analytical

investigation difficult. For example, boundary layer analysis is complicated by the

fact that the thermal layer is wound into the interior of the ball. While these

interactions make many types of analysis difficult or impossible, they also force a

very fundamental approach to the study. The goal of this analysis is to produce a

first order or 'engineering' approximation to the fluid behavior. This approximation

29
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will be tested against the experimental results presented in chapter two.

3.2 System Description

Figure 7 presents a sketch used to define the system under study. The system

consists of that portion of the (radius c) ball of the plume marked by the stippled

region. The center of the ball serves as the origin of the frame of reference for the

system, with the far-field velocity, U, approaching the ball from above. A dividing

streamline, marked with the letter D, separates the ambient fluid that is entrained

from that which is left behind. The system is defined so that all entrained fluid

enters the system through the annular region marked by B. The warm fluid from the

heater enters the system through the annular region marked by A. The symbol C

represents the entrained-layer thickness, 6 represents the thermal-boundary-layer

thickness, F is the (constant) source volume flux into the system, r. is the radius of

the feeder conduit, and T. is the temperature of the source material. Tmb, p., and

) , represent the (constant) quantities of ambient temperature, density, and viscosity.

3.3 Assumptions

With the system so defined, make the following simplifying assumptions for

the analytical model:

(1) Heat loss in the conduit is negligible compared to heat loss in the

ball.

(2) The temperature, density, and viscosity inside the ball may be

approximated by average values. Let T, p, and p represent the average

temperature, density, and viscosity, respectively, of the fluid inside

the system.

(3) The temperature in the thermal layer of thickness 8 varies only in
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Figure 7. System used in analytical solution
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the radial direction. Furthermore, the temperature profile across this

layer is linear.

(4) Negligible differences exist between the values of density and

specific heat in the heated and ambient fluids for mass conservation

considerations.

(5) For asymptotic calculations, the entrained layer is thin, i. e., c - R

or C << 1.

(6) P. >> P, so Stokes law (Batchelor, 1967) may be written as,

U = gaR2 AT ()
3v.

where:

a is the coefficient of thermal expansion

g is the acceleration of gravity.

v, is the ambient kinematic viscosity

AT is T - Tamb.

(7) The portion of mass input from the heater that goes into the lengthening

conduit is negligible (ACU << F).

(8) The average speed of fluid in the conduit (Uc) is greater than U.

3.4 Thermal Power Balance

Applying the principle of conservation of energy to the stippled volume in

figure 7 yields the following general relationship for thermal energy stored in the

system

where:
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" . -(.a (2)

"." symbolizes rate of change per unit time

Oin is the rate of heat transferred into the system

Qout is the rate of heat transferred out of the system

Q is the thermal energy stored in the system.

Now, the heat input to the system comes as a result of the warm fluid entering

through the circular region marked by A (from the source) and through the annular

surface region marked by B (from entrainment). Symbolically,

0. - QA -*' (3)

Heat leaves the system via conduction through the surfaces of the

hemispheres marked by E and D. So,

0.= 02 - OD- (4)

Note hemisphere E has radius R while hemisphere D has radius c (=R + ). The heat

transferred through E is greater than that transferred through the surface of the

hemisphere marked by X, with the difference being the amount entrained through

the annular surface marked by B, i. e.,

B - 05 - r (5)

Now, substituting (3), (4), (5), into (2) gives

dQ =Q0AQ - _ (6)
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Assumption (1) allows us to write

. - FATpc, (7)

where: Cp is the specific heat at constant pressure.

ATs=T, - T.mb (constant)

To find an expression for the heat lost from the system at the surface of the

sphere marked by X and D (radius - c), use assumptions (2) and (3). Then,

c2 AT(8
QXQD 4 "-i f I-41tky(-- 8Od'rD'- 6

where:

k is the thermal conductivity

y is a dimensionless parameter, defined so that Y2 is the ratio of heat

loss from the sphere of radius c to total heat loss from the sphere of

radius R. Note that 0 s y s 1.

Making these substitutions for QA, OX, and QD, equation (6) becomes

d(Q) C2 AT(9
d pcFAT, - 4xKy((9

The thermal energy, Q, stored in the system is

Q - pcVAT (10)

where V is the volume of the system.

Substituting this expression into (9), using assumption (4), and recalling that k ,
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pcPx gives

0(VAT) = FAT, - 4x(iATC (11)

at a~)(I

where x is thermal diffusivity.

Note that if the heat loss term,. . , is zero, this equation reduces to the

energy balance used in the Griffiths and Campbell (1990) model.

3.5 Mass Balance

Using assumptions (4) and (7), the application of the principle of conservation

of mass to the system yields

f= F + e (12)
dt

where: e is the rate of entrained fluid entering the system, and AC is the area

of the conduit.

Since the speed of the fluid at the equator of the ball is U/2 (Happel and

Brenner, 1965), ambient fluid is entrained at B at the rate e - %RUC. So, equation

(12) becomes

dV F + =RUC. (13)
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3.6 Simplification

We can estimate the thickness of the thermal boundary layer, 8, by (rt)b7

The time that the hot and cold fluids are in contact is proportional to R/U. So,

8 -k (14)

where k, is a dimensionless constant.

In the best model available, Griffiths and Campbell (1990) assumed that all of

the heat added to the system was entrained in the ball of the plume. In the present

notation, this is equivalent to setting C equal to 8, i. e., all of the thermal boundary

layer is entrained. The experimental study in chapter 2 suggested that not all of the

heat added to the system was entrained in the system. This heatloss is most vivid in

the T.rnb = -26.IC case (figure 6b). Heat loss will also, however, play a role in the

other two cases considered. In all of these cases, only a portion of the thermal

boundary layer will be swept into the ball, i. e., C < 6. Define a ratio between C and

8 using a dimensionless parameter q where

C = 716 (15)

Note 0 s n ,: I so ij - 0 means no entrainment and Tj - 1 means no heat loss.

This new parameter, q1, is related to the location of the rear stagnation point

in figure 7. The streamline around the ball that ends at this stagnation point is the

dividing line between entrained fluid and that left behind. The position of this

stagnation point will vary depending on the size of U relative to the speed of the

fluid coming up the conduit (Uc). A reasonable relationship that incorporates this
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speed dependence is

= -(lul. (16)

where:

P is a nonnegative dimensionless constant

U, (= F/A.) is the average speed of fluid in the conduit.

For a continually fed plume, U < Uc, so n < 1, as required. The constant P provides a

measure of the effect that the U/U c ratio has on TI. As 0 approaches infinity, '1

approaches I and we again have the case in which all of the thermal layer is

entrained (Griffiths and Campbell, 1990). For P = 0, n = 0 and none of the heated

ambient fluid is entrained into the ball. For our purposes, the appropriate value of

will be determined from experimental data or numerical computation data.

The previously defined dimensionless quantity, y, in equation (8) can be

expressed in terms of nI. Since y2 is the ratio of heat lost from the system at the

surface of the sphere of radius c to the total heat lost through the surface of the

sphere of radius R (figure 8), we have

2.HL(C-.(j~j)2(17)

Y HT bounr l a

Using Stokes law (1), the thermal boundary layer approximations (14) and the
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Figure 8. Simplified temperature profile through the thermal boundary layer.

thermal/fluid boundary layer relationships (15-17), and assumption (5) yields:

dV nkF I_ . ) Ua.(8

energy: d(V& 7) . FATs - 127cxvu 1(129)
dr kig U, R
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3.7 Asymptotic Analysis

Nondimensionalize equations (18) and (19) by setting

R.-- ?2- O,,ZI U V

r=--, x=--, u=-, v- (20)R. t_ A T U, V.

where,

(= 89ATv, ,F ' /4 (21)

R. is the asymptotic radius of the ball for the case of no entrainment or no heat loss

(Whitehead and Luther, 1975). In that case, the radius of the ball will grow no larger

than R, V. is the volume of a sphere of radius R. and t. is the time required to

fill this volume at a flow rate of F. Using assumption (7), the resulting

dimensionless equations are

dv(22)

(a) (b) (c)

d(vO) ,,- rIlup (23)

(e) (/) (g)

where,

P-s ,(24)

C 3 4(7t51' 1.7236 P
2 7i-k 9 ) " 1
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Note S has been defined to be analogous to the standard Rayleigh number. The

Stokes equation (1) in dimensionless form is

D. -_(RS f 2  (25)

where,

D , 1 (!_7g ] 3, 0.011 (26)

&vF2nS7l2k 9 ) k 2

At small times, before ball liftoff, the entrainment term (c) in equation (22)

and the heat loss term (g) of equation (23) can be neglected. With these

simplifications, these equations yield a rise law identical to that of Whitehead and

Luther (1975):

a-1
r - rn 3 (27)

These relationships hold for t < -c, where

-"z Sw'P-s (28)

For r > c,, the entrainment term (c) becomes important in the mass equation (22). In

this case, the rise law is identical to Griffiths and Campbell (1990):

r - T -V4

e - 5
/  (29)

U -T



41

This result will hold as long as the heat loss term (g) is negligible, i.e., for -1 < T <

-r2' where

We>rha - ( (30)

When - > r2, heat loss (g) balances input (f) in the energy equation (23) and

entrainment (c) balances the rate of storage (a) in the mass equation (22), giving a

new result

3*2P

r - 4-3p

_ 54_ (31)
u - 4'31
/, - 4-3p.

3.8 Comparison with Experimental Result

The asymptotic model developed in this chapter modifies the Griffiths and

Campbell (1990) model by adding the effects of heat lost from the ball. This

addition results in a smaller asymptotic rise speed (equation 31) for any finite p,

compared to the best previous model (Griffiths and Campbell, 1990). Since the speed

of the experimental results was roughly constant, and the Griffiths and Campbell

(1990) rise law predicted slightly increasing speeds, any finite choice of I0 will bring

the new model closer to the experimental results.

This improvement may be measured quantitatively by computing the

percentage of the difference between the Whitehead and Luther (1975) model and

the optimal exponential model. This same comparison was used to evaluate the

performance of the Olson and Singer (1985) and the Griffiths and Campbell (1990)
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models in chapter 2 where the best percentage improvement (Griffiths and Campbell,

1990) was 8 1.6% for the Tamb = 25C data and 89.5% for the Tamb = O. 1C case. The

new asymptotic model allows I3 to be chosen to match the optimal exponential model,

so for 0 = 5.76 (for Tb = 25C) and 0 = 1.33 (for Tmb = 0.1C), the percentage

improvement is 100%. The rise laws for these cases are plotted in figures 9 and 10.

(The corresponding volume versus time plots are given in figures 11 and 12.) These

choices of 03 indicate a measurable improvement, however, they also suggest that the

addition of heat loss to the model is not as significant a contribution as the addition

of entrainment. Thc addition of cntrainment alone (Griffiths and Campbell, 1990)

accounts for the majority of the difference from the experimental results. For the

Tamb = -26.1C case, P must be chosen as -1.866 in order to match the optimal

exponential model. This choice of a negative P violates our assumption that P > 0

and makes the new model invalid for this case.

The determination of 1 may be based on comparison with experimental or

numerical data, or on some knowledge of the relationship between the thermal and

fluid boundary layers for a given set of parameters. Any positive, finite choice of

will improve the model. For example, 13 = 1 results in a 95% improvement for the

T,,b case and a 99% improvement in the Tab = 0.lC case. This general improvement

in these two cases for all positive, finite 13 confirms that the heat loss effect is an

important refinement of the model when the plume has the balloon-on-a-string

structure.

3.9 Limits of Applicability

In deriving the new rise law (31), we made several simplifying assumptions.

The new rise law will become invalid when these assumptions no longer reflect the

physical situation. Two of these assumptions, one implicit and one explicit, appear
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to present the most severe limitations.

3.9.1 Negligible Conduit Heat Loss

By neglecting the heat lost in the conduit compared to the heat lost in the

ball, we assumed that the temperature of the fluid entering the system through the

circular surface A in figure 7 was the same as the source temperature of the heater.

As the conduit grows in length, this assumption is no longer valid.

To estimate the height at which the conduit length may become important,

consider the approximate thermal diffusive thickness,

For the conduit, the time scale for this diffusion is U,/z, where z is the length of the

conduit. So, the thermal diffusive thickness becomes

8= %-.

Now, as a first approximation, the conduit heat loss will become important when this

diffusive thickness equals the conduit radius, r.. Recalling that

F F

We have that

F
K7T

where zo is the height at which conduit heat loss is important.

For the Tamb = 25C case, zo = 25.2 cm and for the Tamb = 0.IC case, z. - 18.8

cm. This scaling argument, of course, only gives a rough estimate of z., but these

calculations indicate that heat lost through the conduit may be significant even for
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the heights observed in the experimental studies.

3.9.2 Balloon-On-A-Strinp Shape

In describing the system used for the analysis, we implicitly assumed that the

plume structure could be modelled as a sphere trailing a narrow conduit. The Twb

-26.1C case did not exhibit this structure. As shown in section 3.8, the new rise law

did not apply to this case since the appropriate choice of 3 was negative, violating

the assumption of nonnegative P.

To help understand some of the factors that determine when the balloon-on-a-

string shape will occur, consider the theoretical analog of a sphere in an infinite

tank of syrup. The sphere has radius a and maintains a vacuum internally (figure

13). The sphere is also able to immediately heat the syrup and reduce its viscosity to

zero.

At the surface of the sphere, the normal stress must be continuous, so an = -P

+ lur (where an is the normal stress) is continuous. Inside the sphere, however, P =

= 0, so we must have

AP = pu,.

This idealized situation is analogous to the heater in the tank. For the

experiment, then, this AP roughly represents the pressure difference needed to pull

cold syrup onto the heater surface. If this pressure difference is not available, the

heater will draw preheated syrup rather than ambient syrup.

The total pressure head available in the plume is roughly ApH, where H is the

total height of the plume. This total must supply the head to send fluid up the

conduit and to draw ambient fluid onto the heater. While the ball is forming on the

heater, the pressure head is increased by increasing the size of the ball. When the

ball radius is large enough to generate the pressure difference needed to draw

ambient fluid, the ball lifts away from the heater and trails the narrow conduit. In



49

Figure 13. Theoretical analog of heater and tank.
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the Tamb = -26.1C case, pu r is so large that the ball is never able to generate enough

head to pull in new ambient fluid, so it recycles previously heated fluid.

Using the idealized spherical geometry analog, we can estimate the height

needed for liftoff. Since

AP - ApgH. =

and

U,
rU 

F = 2%rA2u

we can solve for the height needed for liftoff,

H. pF
21t A pgrh3

where r h is the heater radius

HO is the height needed for sphere liftoff.

Using this relationship with the experimental parameters, we have

H. 125C - .02 cM

Ho1e.1c - 1.1 cm
Hol-2&lc - 3.5 X 103 cm.

For the experiment, liftoff for the Tamb = 25C case occurred at approximately 3.5

cm. For the Tawb = 0.1 C case, liftoff occurred at approximately 13 cm. No liftoff

occurred for the Tumb = -26.IC case.



CHAPTER 4

NUMERICAL MODELLING

4.1 Purvose

An accurate numerical model of starting plume development provides several

significant advantages over the experimental investigation. First, a numerical model

allows the investigation of parameter spaces that were not or could not be explored

in laboratory experiments. Such models also allow more detailed observations than

laboratory experiments. For example, while velocity values may only be observed at

points where instrumentation is available for the experiment, the velocity is known

at each computational node in the numerical model. There are, in general, many

computational nodes throughout the domain of interest, and they are more dense in

regions of rapid flow change. These nodes, therefore, serve as a network of 'sensors'

that are distributed much better than usually allowed in the laboratory environment.

Since a good numerical model will provide the means to run more detailed

'experiments' in a wider parameter range than the laboratory case, verification of

the numerical model is essential. The experimental study of chapter 2 provides an

excellent opportunity to perform such verification. The goal of the numerical model

in this study is to accurately predict the observed behavior of the experiments,

principally the height of the plume as a function of time. In subsequent studies it

may be used to predict creeping thermal plume behavior in other cases with some

confidence.

51
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4.2 Governing Equations

The physical problem is well-described by the continuity equation for

incompressible fluids, the Navier-Stokes equations and the energy equation, with the

Boussinesq approximation. These equations are given:

a"l. (32)

j
pau i-u au -p-pj(-") at _ (3

with,

(34)

aT aT ck

pc, +Ci + '1-0 (35)

with,

qj, - -a " (36)
ax,

and g varies with temperature as indicated in figure 2 of chapter 2, i, e.,

logo IA& = 20.606 - 14.991(1000/T) + 3.0762(1000/T)2
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Where .i has units mPa-sec and T is in Kelvin units. In equations (32) through (36) t

is the time, ui is the velocity component in the xi coordinate direction, P is the non-

hydrostatic pressure, T is the temperature, p is the density, "rij is the stress tensor, qi

is the heat flux vector, p is the dynamic viscosity, cp is the heat capacity, k the

thermal conductivity and a is the coefficient of thermal expansion. T,. f is a

reference temperature for which buoyant forces are zero, 8ij is the identity tensor,

and gi is the gravitational acceleration.

4.3 Boundary Conditions

The computational domain and boundary conditions have been chosen to

model the physical situation in the experimental apparatus. The axisymmetry of the

plume suggests making the domain axisymmetric with the radial coordinate

measured out from the center of the heater. Boundary conditions include the no-slip

condition along the top, side, and bottom walls. (Since a relatively thick layer of

dried syrup formed on the surface of the fluid, the boundary conditions are set

assuming that the vessel is completely enclosed.) Along the axis above the heater,

normal velocity and heat flux are zero due to symmetry considerations. Along the

bottom, perfect insulation is assumed, excluding the heater. The temperature is

assumed to be ambient on the top and side. The heater input is specified as a

boundary condition on the bottom, corresponding to the physical size of the heater

in the experiment. The value of heat flux was calculated from the resistance of the

heater and the applied voltage across the heater. Figure 14 presents a graphical

interpretation of the domain and boundary conditions.

4.4 Computational Method

The most common tools for solving incompressible flow problems, such as that
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Figure 14. Computational domain and boundary conditions.
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described in the previous section, are the finite-difference method (FDM) and the

finite-element method (FEM). The technique chosen to construct the numerical

model for the plumes was the FEM. The FEM has been the method of choice in the

computational fluid dynamics literature for the last few years. The major reasons

that FEM was chosen for this problem were the flexibility it provides in choosing

the computational grid and the availability of an existing code that was well-suited

to the plume problem. The FEM allows a variable mesh to be used when discretizing

the domain; the FDM requires that the nodal spacing be equal throughout the

domain. This selection flexibility provides the opportunity to make the mesh dense

in areas where large gradients occur. For this specific problem, the finer mesh may

be used to resolve the large temperature gradients on the boundary of the plume.

The finite-element code used to produce the numerical model is named NACHOSII.

NACHOSII, written by D. Gartling (1986) at Sandia National Laboratories, is

designed for two-dimensional planar or axisymmetric analysis of viscous,

incompressible flows, including the effects of buoyancy and heat transfer. A more

complete description of NACHOSII will be given in section 4.9.1.

The brief description of the FEM presented here is practically and

computationally oriented. A large body of literature describes the more theoretical

aspects of the technique. Two excellent references that address the FEM from

theory and application to fluid flow problems are Gunzburger (1989) and Cuvelier,

et. al. (1986). The following discussion, based largely on Gartling (1986), describes

the FEM in general terms; specific application to the plume problem is given in

section 4.10.

The FEM begins by subdividing the domain of interest into a number of

geometrically simple regions called finite elements. Within each element, the desired

unknowns (u1, P, T) are located at specified points called nodes. These unknowns are
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interpolated by some suitable interpolation function at the nodes. The proper choice

of the elements and interpolation functions is crucial to the success of the FEM.

Requirements for this choice will be considered in a later section. Using the

notation of Gartling (1986), the unknowns, itj, P, and T at a general point xi within

an element may be written as a vector product of the interpolation functions E, ,

and (, and the corresponding nodal values:

UPxPO = 'T 
T(x)al/t)

P(xit)= ()FI

TXx,,t) = T xA)

The superscript T denotes transpose.

Substituting these expressions into the governing equations (32) - (36) yields

the following set of equations.

Momentum:

f ~ , AC, /eEI: = "'

Continuity:

Energy:

f AiA= fir

These equations will, of course, no longer be an exact representation of the physical

interactions described by (32) - (36). The amount that they differ due to the
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interpolation approximation is represented by the residuals, or errors, denoted by

ltul, heu21 It, 1sT . The FEM seeks to minimize these residuals in some weighted sense.

The particular FEM used to model the plumes is a Galerkin method. In this

technique, the residuals are minimized by making them orthogonal to the

interpolations functions over each element. This condition may be expressed as

(. ) = (43f.) = 0

&2 ) = (6 j-2) = 0 (37)

= = 0

where <.,.> is defined as

with 0 being the area of an element.

The Galerkin method reduces the governing partial differential equations

(32) - (36) to a nonlinear system of ordinary differential equations in time. The

unknowns of this system are (OP P, f) for each element. The coefficients of the

system are derived from the integrals represented by the inner products in equation

(37). The details of this manipulation are described in the appendix. The results can

be expressed in matrix form as follows

momentum:

M- c(CJ) O-ofl+x(0 O, B(i) f-f(i5 (38)dt
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continuity:

(39)

energy:

dt

where

r=Jt(,aT ) (41)

Each of these element matrices and vectors has a physical meaning associated

with the terms in the governing equations. The M and N matrices represent the mass

and heat capacity terms in the momentum and energy equations, respectively. C and

D are the result of the advection terms in the momentum and energy equations. K

and L represent the diffusion terms. The Q matrix is the gradient operator while QT

is the divergence operator. The B matrix represents the buoyancy term from the

Boussinesq approximation. rand C allow for forcing functions in the system; for

this problem, F is zero. These physical interpretations are very helpful in analyzing

the method's performance for the given plume application. The exact integral

expressions for these matrices are given in the appendix. Once the matrices are

developed for one element, the global matrix system may be assembled from the

element matrices by addition, i. e.,
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m/M
c = E <'

'-I

where nelm is the total number of elements in the grid. Note that the global system

has the identical form of (38) - (41), where the matrices represent global matrices.

Equations (38) - (41) may then be combined into a single matrix equation

(dO
dt C(CO+K(0,f) -Q

00 o 1 0 - (42)
ooN dr 0 0 D( + L(i)ATM (i0)dt 0 o ()+u d(f, )

or,

M- + Ka(,)W = F(U,7) (43)dt

where

P7T=

There are two common methods for solving the matrix system (42): the mixed or

integrated FEM and the penalty FEM.

4.4.1 Integrated Finite Element Method

The integrated FEM is a straightforward extension of the process described
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above. The system of ordinary differential equations in time is solved for velocity,

pressure and temperature at each time step

4.4.2 Penalty Finite Element Method

In contrast to the integrated FEM, the penalty FEM eliminates pressure as an

unknown in the matrix system. Since a large part of the cost of any FEM is the

solution of the matrix system, the penalty method generally has reduced

computational and storage costs when compared to the integrated FEM. The

theoretical background for the penalty method comes from the application of

constrained optimization theory to a linearized form of (32) and (33). Let us briefly

consider this form in order to develop the equations used in the penalty method.

When the advection and buoyancy terms in (32) are dropped, the resulting linear

equations are commonly called the Stokes equations

au a ¢
- -=0

au. 0
ax,

This problem may be recast as a minimization problem where the momentum

equation is constrained by the continuity equation. A standard method of enforcing

such a constraint is the method of Lagrange multipliers with penalization (Girault

and Raviart, 1986). This approach explains the use of the term penalty for this

method.

Returning now to the nonlinear problem (32) - (36), recall that it has no

known equivalent minimization form, but the penalty method may be applied to this

problem by using a slightly different approach. When the minimization form of the

Stokes problem is solved by the penalty method, the corresponding Euler-Lagrange

equations are identical to the Stokes equations, except that the continuity equation is
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relaxed, i. e.,

au,
axi

The parameter e is the penalty parameter. Note that the continuity equation is

recovered as e goes to zero. One can think of this as a pertubation to the continuity

equation that introduces some small compressibility into the system.

Applying this perturbation to the continuity equation (32), approximating the

velocity and pressure with the interpolation functions, and using the Galerkin

procedure gives

Or, in matrix form

QL -- -eM/

where

M= fo'd.

Solving the matrix equation for P gives

-- lM,- QT.

This equation allows pressure to be eliminated from the global matrix system. The
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global system for the penalty method, therefore, may be written as a matrix equation

(dO'
(Mofd7 C(U+K(Uj,)K, E(f) Ji) A(7)

_jdi 0 f)W il)

where

K, = 1QMp-1QT.
C

After the system is solved for the velocity, the pressure may be recovered using the

matrix form of the perturbed continuity equation.

Note that to allow for easy element-level construction and subsequent global

matrix assembly of the Kp matrix, it is necessary that the terms of Mp "I be easily

constructed, i. e., Mp must be invertible at the element level. Since Mp is defined in

terms of the pressure interpolation functions, Y, these functions may only be defined

within an element, i. e., they can be discontinuous between elements. For this reason,

the pressure interpolation functions for the penalty method will always be

discontinuous between elements.

4.4.3 Iterated Penalty Method

Gunzburger (1989) describes an iterated penalty approach that enforces the

incompressibility condition using an iterative application of the perturbation of the

continuity equation. The algorithm is given as

1. Given pn-1, solve for Tv', t n
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MM (" + '+ -(O ,n + B(T '=
dt

dTAN- + L(i' Tm  =6
dt

2. Update

F' =f.- . -IQTOA
e

(This step is based on a perturbation to the continuity equation.)

3. If discrete divergence is too large repeat. (The traditional penalty method

occurs in the method when Po = 0 and steps 2 and 3 are performed only once.)

Results of numerical experiments with this method were generally poorer than those

found with the Uzawa algorithm described later (4.9.4). It is included here as a

reference to compare with the Uzawa algorithm.

4.4.4 Time Integration

Both the integrated and penalty FEM provide a spatial discretization that

results in a system of first-order ordinary differential equations in time. The

solution of the system is found by finite differencing in time; see Strikwerda (1989)

and Sod (1984). In the NACHOSII code, a predictor-corrector method is employed

that uses an explicit time-differencing for the predictor and an implicit method for

the corrector. The implicit differencing is unconditionally stable for all choices of

time steps and thus avoids severe restrictions in the choice of the time step. A choice

of first-order or second-order methods is available. The first-order method uses a

forward Euler predictor and backward Euler corrector. The second-order method

uses Adams-Bashforth predictor and trapezoid corrector. The second order methods

have the advantage of increased accuracy while the first order Euler methods have
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damping characteristics that are often helpful in smoothing the starting conditions

in the initial stages of a problem. Automatic time-step control is also provided with

both methods.

4.5 Element Choice

This choice of elements for a finite-element model is a matter of determining

the appropriate geometry (e. g., triangular or quadrilateral) and the order of the

interpolation functions defined on the element. The regular, quadrilateral shape of

the computational domain suggested the use of quadrilateral elements. NACHOSII

provides an element library that includes an eight-node quadrilateral and a nine-

node quadrilateral (figure 15). These elements will be considered specifically in the

following discussion.

Furthermore, the choice of the order of the interpolation functions is an

important consideration. Cuvelier, et. al. (1986) describe necessary conditions for

these functions. When Green's formula is applied to the Galerkin form of the

go, -rning equations (equation (37) and the appendix), first-order derivatives of the

vel ,city interpolation functions occur, but the pressure interpolation functions are

noz differentiated. This means that the velocity functions must be continuously

dif'erentiable in each element and continuous in the whole domain. The pressure

functions, however, need oniy be continuous in each element; they may be

discontinuous between elements. Cuvelier, et. al. (1986) also indicate that, in order to

prevent the velocity approximation from being totally specified by the continuity

equation, one generally requires that the pressure interpolation functions be at least

one order less than the velocity interpolation functions.

NACHOSII gives several interpolation choices that are consistent with these

criteria. In each choice, the same interpolation function is used for temperature and
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Figure 15. Eight and nine node quadrilateral elements.

velocity components. For velocity, biquadratic, continuous interpolation functions

may be used for the eight-node quadrilateral (QUAD8) or the nine-node

quadrilateral (QUAD9). For the pressure approximation, one may choose continuous,

bilinear functions or discontinuous linear functions.

The element and interpolation choices are crucial to the success of the

Galerkin FEM since they determine which discrete finite-element subspace is used to

approximate the solution. This choice is the topic of much current research. The

following discussion gives some basic theoretical guidlines. Gunzburger (89) gives a

description of which spaces are allowed for approximating equations (32) - (36).

Choosing velocity, pressure, and temperature interpolations arbitrarily will often
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lead to poor results. In incompressible flow calculations, the most difficult condition

to satisfy is the divergence-free condition (32). Gunzburger (1989) also discusses a

key theoretical condition that relates to the satisfaction of the continuity equation

(32). It is known as the Ladyzhenskaya-Babuska-Bressi (LBB), the inf-sup, or the

div-stability condition. Girault and Raviart (1986) give a complete discussion of this

condition, along with various proofs for several elements. There are several

equivalent statements of the div-stability condition; proof of this condition is not

trivial and will not be attempted here. One important product of this condition is

that it allows us to predict the convergence rate of the FEM:

Il - git + IP - pd + IT - Tdil = 0(d m 'W *))

where

£ = (u,u2)

(p,q) = fpqdD

Jq1o = (q,q)r2

n,,I 1_2( 2 \1/2

and the superscript d denotes the computed solution. The parameters k and I are the

orders of the velocity (or temperature) and pressure interpolations respectively.

Note that d is a parameter that relates to the size of the mesh spacing. The QUAD9

elements with continuous and discontinuous pressure approximation satisfy the div-

stability condition (Girault and Raviart, 1986; Gunzburger, 1989). The QUAD8

elements with discontinuous and continuous pressure approximation do not satisfy
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the div-stability condition in the global sense. However, they do satisfy the

condition in a local sense, and this consideration allows the same rate of convergence

to be proven for these elements as for the continuous pressure elements (Girault and

Raviart, 1986). So, from a rate of convergence point of view, none of the

quadrilateral elements has any theoretical advantage.

Another consideration in choosing appropriate elements is the phenomenon

often called mesh locking. Roughly speaking, in satisfying the continuity equation

(32), some elements enforce too many incompressibility constraints. When this

happens, the only solution is the trivial (or locked) solution. Elements that satisfy

-the div-stability condition will not lock. The mathematical analysis of this condition

is beyond the scope of this paper. Hughes (1986) presents a heuristic method to

determine an element's propensity to lock. While this method is not rigorous, it

provides some means of comparing the effectiveness of different elements to model

incompressible flow. The following paragraph is a summary of this method of

constraint counting.

On a standard mesh for a two dimensional problem, let neq be the total

number of velocity equations after boundary conditions have been imposed and let

nc be the total number of incompressibility constraints as specified by pressure

nodes. Define the constraint ratio, r, by

n

nC

The idea behind the method is that r should mimic the behavior of the number of

equilibrium equations divided by the number of incompressibility conditions for the

governing system of partial differential equations (i. e., the number of space

dimensions and 1, respectively). In two dimensions, then, the ideal value for r is 2.
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A value less than 2 would indicate a tendency to lock while a value greater than 2

indicates that not enough incompressibility constraints are present. A value of r that

is less than or equal to 1 indicates more constraints than degrees of freedom and

severe locking is expected. For two-dimensional problems, the following rules

summarize the method:

r > 2 too few incompressibility constraints

r = 2 optimal

r < 2 too many incompressibility constraints

r . 1 locking

Table 4. Div-stability and mesh locking for elements.

Element r LBB satisfied?

QUAD 8, disc P 2 no

QUAD 8, cont P 6 no

QUAD 9, disc P 2 2/3 yes

QUAD 9, cont P 8 yes

The div-stability condition, roughly speaking, insures that locking will not occur,

however, it does not guarantee an optimal value of r. Note that a value of r greater

than two may imply that the incompressibility condition is not adequately satisfied,

so an element may satisfy the div-stability condition (so it won't lock), yet it may not

enforce the incompressibility condition adequately. Table 4 summarizes the div-

stability and locking characteristics of the elements available in NACHOSII. The r

values indicate that none of the elements being considered will lock; QUADS

discontinuous pressure has the optimal r value.

Pelletier, et. al. (1989) show that a discontinuous pressure approximation is

more effective in modelling the divergence-free condition than a continuous
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pressure approximation. Their argument is based on element mass conservation and

the degrees of freedom required. This latter argument considers the dual role of

pressure. In the integral form of the continuity equation (appendix), the pressure

approximation must enforce the continuity equation. Additionally, the pressure

approximation must balance the viscous and buoyancy terms in the momentum

equation. The pressure must adjust itself, then, to satisfy the continuity equation

while matching the needed balance in the momentum equation. There must be

enough pressure degrees of freedom to satisfy both of these requirements. One way

to enlarge the pressure space is to move from a continuous pressure approximation to

a discontinuous pressure approximation.

4.6 Discrete Divergence

To this point, we have described the FEM in general terms. We have

considered the general procedure, the mixed and penalty methods, and the choice of

elements and interpolation functions without applying any methods to the plume

problem. From this point forward, we will focus on the plume problem application.

The basic theory that we've considered so far provides some assistance in choosing

which method and clement is best suited for this problem, but we need additional

tools to determinc which method will give the best results for the plume application.

The experience of our calculations will show that computing the discrete divergence

is a good diagnostic for making decisions for practical applications like the plume

problem.

As suggested by the previous disc-assion of the div-stability condition, one of

the most difficult aspects of numerically modelling incompressible flow is the

satisfactions of the continuity equation. This difficulty is compounded in the plume

problem by the strong relationship between viscosity and temperature. This
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relationship results in a problem with strong coupling between the energy and

momentum equations. It also provides regions of high viscosity gradients, for

example, at the boundary of the plume.

Pelletier, et. al. (1989) proposed a simple diagnostic tool for measuring the

effect of large (constant) viscosity and large viscosity contrast on incompressible

flows. They argued that traditional approaches often resulted in poor solutions

because of poor satisfaction of the continuity equation or the divergence-free

condition (even when the elements used satisfied the div-stability condition!), and

they suggested that computing an approximation to the divergence of the velocity

field (i. e., a 'discrete divergence') is an inexpensive measure of the reliability of the

solution.

In order to study the effects of viscosity variation on the plume problem,

NACHOSII was modified to report the discrete divergence at each time step.

Following Pelletier, et. al. (1989), the discrete divergence was computed as

DDJV=max,1 1 Ig

where rJN is the velocity vector on an individual element, N. The maximum

is taken over all elements.

This modification was easy to implement, and relatively inexpensive to

compute, since for each element, the matrix equivalent of the divergence operator,

QT was already computed. The product QTC provided the 'components' of the

discrete divergence; the maximum of the absolute values of these components was

chosen for the discrete divergence. FEM theory predicts that the discrete divergence

should be on the order of machine zero (10-15 for the Cray-YMP used for the

calculations) for integrated FEM and on O(e) for penalty FEM for a solution

demonstrating acceptable mass conservation.
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In practical computations,the discrete divergence served as a good indicator

of the reliability of the solution. In tests of the mixed and penalty FEM, the discrete

divergence would generally increase by one or two orders of magnitude before a

problem occurred in the solution. This problem may be a matrix ill-condiioning

error or an unrealistic value of velocity or temperature. This behavior of the

discrete divergence was confirmed for constant viscosity and variable viscosity

applications. Experience has shown that the change in the discrete divergence is a

conservative diagnostic, i. e., an increase in discrete divergence does not always

signal a problem. It does, however, provide an inexpensive means of testing a

solution and we will use it as an indicator of which scaling, element, and method is

best suited for modelling the plume problem.

4.7 Scaliny

Using a dimensionless form of equations (32) - (36) has several advantpges

over the dimensional form. One advantage is that such scaling can provide an

indication of the relative importance of terms in the equations. Dimensionless forms

can also reduce the differences in the magnitudes of different terms in the

cquations. Most related numerical studies (table 1) cast equations (32) - (36) in

Prandtl number-Rayicigh number form by making the following substitutions:

it. IX Uh uh , P P h ' (44)

T ,IL (45)

ji = v-- A, T'
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where AT s is Theater - Tamb, h is height of tank, 'Lr is the viscosity of the ambient

fluid. These substitutions put the equations in the following form (dropping primes

for nondimensional variables):

- L =0
ax3

I aU au- at
Pr, & axj aIxj

aT aT 82T
t ax. aXj2

with,

aut au.

aar

This Pr-Ra scaling is commonly used for modelling Benard-type problems for a thin

layer of fluid. In these types of problems, one may study the effects of increasing

buoyancy by increasing the Rayleigh number. One generally associates the Rayleigh

number with the icinperature difference across the thin layer, or, alternatively, with

the heat input to the thin layer. When this type of scaling is applied to the
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experiment described in chapter 2, the Rayleigh number is very large due to the

large height of the tank. For Tamb = 25C, the Rayleigh number is 6.5 X 106 and for

Tamb = O.lC, the Rayleigh number is 8.5 X 104. These large values of Ra place too

much weight on the buoyancy term in the momentum equation in the Pr-Ra scaling.

This imbalance potentially creates rounding errors in the solution of the FEM

matrix equations which result in a discrete divergence that is too large. The global

matrix terms corresponding to the buoyancy force (terms of matrix B in equation

(42)) are much larger than those of the pressure and viscous terms (terms in matrices

Q and K, respectively, in equation (42)). For some cases, this size difference

measured as large as 106. These large discrepancies create the possibility of round-

off errors and poor matrix conditioning. In fact, these errors accumulate quickly,

preventing successful time integration. As a result, no successful Pr-Ra scaled cases

ran to completion despite numerous attempts using many different grids. Table 5

illustrates the effect on discrete divergence of increasing Ra on an otherwise

unchanged problem. Note that the values in this table were for a mixed method

calculation, but similar results hold for penalty methods. The increase in discrete

divergence implies that mass is not conserved in the solution for larger values of Ra.

Table 5. Effect of Ra on discrete divergence.

Ra Discrete Divergence

1.0 X 104  -10 "s

1.0 X l0 _10 4

1.0 X 106 -10 "s

One alternative to correct this scaling imbalance is to consider a thinner layer

of fluid. For example, one may study the plume formation and travel in the bottom
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fourth of the tank. A similar approach was used by Olson, et. al. (1987) for studying

plume formation. One goal, however, of this numerical study was to test the rise

laws found in chapter 3 for the full plume flight path, and to consider the

effectiveness of the rise laws in other geometries in later studies. Restricting the

depth of fluid would severely hamper the utility of the numerical model for studies

of developed plumes.

The approach used, instead, for the numerical model in this study was to

rescale equations (32) - (36) to balance the appropriate terms in the equations based

on the important physical interactions in the problem. During the ball formation

and rise, the key balance of forces in the momentum equation (33) occurs between

the buoyancy, pressure, and viscous forces. The inertia terms will have a relatively

small effect. With this balance in mind, nondimensionalize the governing equations

with the following substitutions:

U tuo I x

u0 L L

TI T p/ P
AT, pgaATL

where

L L- pga AT.

U.
L

A1, - Tk,, T b

Ths s Pp

These substitutions put the equations in the following form (dropping primes for
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nondimensional variables)

2o (46)
P8x

1 j & ax,

aT T _ 8T 0 (48)

with,

au au-Pa ( (49)

This dimensionless form shows the proper balance between pressure, viscous forces

and buoyant forces. Note that this dimensionless form may be readily implemented

on any primitive-variable finite-element code (such as NACHOSII) by setting

thermal conductivity and acceleration of gravity to 1, heat capacity and coefficient

of thermal expansion to Pr, and density to I/Pr.

This scaling is equivalent to matrix rescaling that has been used successfully

in many applications, e. g., Koch (1985) used matrix scaling to reduce the condition

number of relevant matrices by as much as five orders of magnitude. For a

simplified example, suppose we have the following matrix system:
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-QT 
0 0P 

= 01.

where K and B have elements of greatly different sizes. To rescale them to the same

order, let

IKI = IBl

which is the same as the change of variable

= P

T

This rescaling results in a system that has elements whose sizes are comparable which

can be solved with less round-off error than the original system

_ Q T 0 0 p -=

0 D'T"

The new scaling of equations (32) -(36) resulted in marked improvement in

the performance of the FEM code over that with the Pr-Ra scaling by forcing the

terms in the matrices representing pressure, buoyancy, and viscosity to be roughly

the same size (Table 6). This scaling, therefore, minimized the possibility of round-
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Table 6. Typical matrix norms for different scalings; mixed FEM, discontinuous P,
Ra=6.5 X 106.

Scaling Diffusion Buoyancy Discrete
Matrix(K) Matrix(B) Divergence

Pr - Ra _102 -101 1010

new scaling _102 _102 -10- 14

off errors and provided an effective means of computing the solution.

4.8 Effects of Element Choice

When we discussed elements previously, we gave some criteria for choice

based on the div-stability condition and the heuristic argument of mesh locking.

From these criteria, we can conclude that all of the available elements have the same

theoretical convergence properties, but that the elements with discontinuous pressure

interpolation functions have better divergence-constraint properties.

The discrete divergence calculations confirm these characteristics (table 7).

Note that these results were calculated using the mixed method (since penalty

method requires discontinuous pressure interpolation) on a sample grid for the Twnb

= 25C conditions. In both QUADg and QUAD9 elements, the discontinuous pressure

approximation had a smaller discrete divergence than the continuous pressure

approximation. Of these two elements, the one with the optimal value of r has the

smaller discrete divergence. Note that this element does not satisfy the div-stability

condition in the global sense, so while this condition is related to mass conservation,

it is not sufficient to insure incompressibility. These results, as well as similar

results in other ambient zonditions, suggest the best available element to use for the

plume calculation is the QUAD8 with linear, discontinuous pressure approximation.
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Table 7. Effect of element choice on discrete divergence.

Element r Discrete Divergence

QUAD 8, disc P 2 1015

QUAD 8, cont P 6 -10-3

QUAD 9, disc P 2 2/3 -1o14

QUAD 9, cont P 8 -10-3

4.9 Solution Techniques

The choice of scaling and elements that was discussed in earlier sections kept

the discrete divergence to a minimum for the sample computations performed for

comparison. As the solution progressed in time, however, the discrete divergence

would often grow. Gradual growth was expected due to the larger values of speed

and accumulation of round-off error, but rapid growth served as a good indicator

that the solution would encounter an ill-conditioned matrix error, or that the

computed temperature and velocity would increase to unrealistically large values.

Four different methods were used in attempting to solve the plume problem.

The first two were already coded into the NACHOSII system; the code was modified

to accomodate two additional methods that were variations of the first two methods:

1. The integrated or mixed method

2. The penalty method

3. The Uzawa algorithm.

4. The mixed method using a multistep Newton method

The following paragraphs will report on the results using these methods. For

each method, many different tests involving various ambient conditions and
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assumptions were performed. Additionally, several meshes and time steps were used

for each problem. Before presenting the results for each of these methods, we will

briefly describe the NACHOSI system.

4.9.1 The NACHOSII System

The finite-element code used to produce the numerical model is named

NACHOSII. NACHOSII, written by D. Gartling (1986) at Sandia National

Laboratories, is designed for planar or axisymmetric two-dimensional analysis of

viscous, incompressible flows, including the effects of buoyancy and heat transfer.

NACHOSII represents a significant improvement over its predecessor, NACHOSI.

Enhancements include a wider choice of elements, interpolation functions, and time

solution procedures. This flexibility provided a combination of factors that

produced a more effective numerical model than that allowed by NACHOSI.

Another key difference between NACHOSI and NACHOSII is that NACHOSII solves

the momentum and energy equations as one system. NACHOSI solves each equation

individually and then uses the solution to solve the remaining equation.

NACHOSII provides a choice of triangular or quadrilateral elements. The

velocity and temperature are approximated by quadratic functions that are

continuous between elements while the pressure is approximated by a linear

function. The pressure may be continuous or discontinous between elements. The

assembly of the global matrix equations is by the direct stiffness approach where the

equations for nodes common to adjacent elements are added. The majority of the

computational time is spent solving the nonlinear equation (43). NACHOSII uses the

Newton method to linearize the equation by computing the Jacobian of the system.

More details on the implementation of this method will be presented in section 4.9.5.

The Newton method and the FDM reduce the problem to a linear system that
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is nonsymmetric (for the nonlinear Navier-Stokes problem) and indefinite. The

solution method in NACHOSII is a special form of Gaussian elimination called the

frontal solution method. This method combines the global matrix assembly process

with Gaussian elimination so that unknowns are solved in the system as soon as the

assembly for each element is completed. This combination minimizes the amount of

memory used since only a portion of the global system is 'active' in main memory.

For large problems, e. g., three-dimensional problems, iterative linear solvers (e. g.

Conjugate-Gradient) are more efficient than Gaussian elimination. Since such

iterative systems require the assembly of the global matrix first, no attempt was

made to modify the frontal assembly process to allow the use of iterative solvers.

Besides in-house projects at Sandia, NACHOSII has been successfully used for

the solution of a variety of problems. NACHOSII results compared favorably with

FIDAP results in Gartling (1990). Koch and Yuen (1985) used a modified version of

NACHOSI to model mantle convection.

4.9.2 The Integrated Method

Recall that this method solves the continuity equation as part of the global

system of equations. Due to shortcomings in the method of solving the nonlinear

system of equations (43), this method did not keep the discrete divergence small

enough to allow an accurate solution. The problem with the method of solution will

be addressed in section 4.9.5. Typically, the discrete divergence would remain small

for a period of time, then increase sharply (usually by at least two orders of

magnitude) before an error would occur. Figure 16 shows the change in discrete

divergence for a case where Tmb = 25C using the QUAD8 element with

discontinuous pressure approximation. Following the large increase in discrete

divergence at step 269, the temperature increased to an unrealistically large value.

This variation in discrete divergence is even more pronounced in the Tamb = 0.IC case.
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Figure 16. Discrete divergence for mixed method.
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4.9.3 The Penalty Method

Table 8. How e affects discrete divergence.

Penalty Parameter Discrete Divergence

1.0 X 10-15 -10 -8

1.0 X 10-14 _10 5

1.0 X I0- 13  _1O-3

As discussed earlier, the penalty method uses a fixed parameter to

approximate the incompressibility condition. The choice of this parameter is often

difficult since choosing it too small will ill-condition the problem and choosing it too

large will introduce too much compressibility into the solution. Table 8 illustrates

how changing the penalty parameter will change the discrete divergence. Note that

these calculations were for the Tamb = 25C case using the dimensional form of the

equations and a QUADS element with discontinuous pressure approximation; similar

results (at smaller discrete divergences) hold for a properly scaled system. The

method used to determine the appropriate penalty parameter was to make several

sample runs and observe which number gave the best discrete divergence behaviour.

As a result, early steps in the calculations showed great promise, but the discrete

divergence would increase sharply at some point later in the calculation. When this

increase occured, the solution soon encountered an ill-conditioning error. As a result

of these errors, no simulation ran to the point of showing a liftoff of the ball.

Figure 17 illustrates this performance for a case where Tamb = 0.1C and e - 1.0 X 10-

13 using a QUADS element with discontinuous presssure approxmation. The penalty

method, however, did lower computing time when compared to the mixed method
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since it solves a matrix system for fewer degrees of freedom. The penalty method

typically used about 35% less time than the mixed method on the same problem.

4.9.4 The Uzawa Algorithm

The Uzawa algorithm is a specific application of an augmented-Lagrangian

method to solve the minimized form of the plume problem. An augmented-

Lagrangian method adds an additional (or augmented) term to the momentum

equation. The advantage of this method is that, due to the presence of this

additional term, the exact solution of the Stokes problem may be found without

making the penalty term go to zero (with the resulting ill-conditioning). It contains

an iterative procedure that corrects the velocity field if the discrete divergence is

too large. Detailed theoretical background for this method, with applications for

Navier-Stokes equations may be found in Fortin and Glowinski (1983). Note that

they mention the application of the Uzawa algorithm to the time-dependent Navier-

Stokes problem, but they show no supporting calculations. In fact, no application

with supporting calculations for the time-dependent Navier-Stokes problem has been

found in the literature.

In the Uzawa method, the matrix equation (38) has an additional term:

MdU+C(MU)-QP K(U,7)U B(7)T IQrQU = F(7)
dt e

where the l/e QTaQU term is the augmented-Lagrangian term and the energy

equation is unchanged. e is a small constant that is usually called a penalty

parameter. This method has the same advantage as the penalty method in that it

eliminates pressure as an unknown in the matrix system and thus decouples velocity

and pressure. This decoupling reduces the size of the matrix system and saves

memory and computing time. However, the pressure solution must be found
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Figure 17. Discrete divergence for penalty method.
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iteratively. Now, to decouple U from P, start with an initial guess for P and solve

for U, then update P and solve again if the discrete divergence is too large, i. e.,

1. Given P", solve for t,' -fn

M O- + C(0")07" - P-' + K(7",7*)O" + B(nr + KOR =
dt

N-' .+ Of 47f= 6

where

KP 1QK, = -QM i-QT

M, = figdia.

2. Update

fR =,-' + MQ RU"

(This step is based on a perturbation to the continuity equation.)

3. If discrete divergence is too large repeat. (The traditional penalty method

occurs in the method when PO = 0 and steps 2 and 3 are performed only once.)

Note that the augmented-Lagrangian theory supports this choice of the

additional term in the step I equation only for the linear Stokes problem, i. c., C = D

= 0. Since the linear problem can be expressed as an equivalent minimization

problem, the minimization theory indicates the appropriate choice of the extra term.

The nonlinear momentum and energy equations that describe the plume problem

have no known equivalent minimization form. Experience has shown, however, that

using the same additional term as the -,,rresponding Stokes problem produces results
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that are comparable to results using the mixed or integrated method (Cuvelier, et. al.

(1986), Fortin and Glowinski (1983), Fortin and Fortin (1985)). This Uzawa method,

incidentally, is not difficult to implement in most finite-element programs, since all

of the component matrices are available.

The Uzawa algorithm seemed very promising, particularly in light of the

excellent results shown by Pelletier, et. al. (1989). They stated that for small e,

convergence of the discrete divergence values to O(e) occurred with only one or two

iterations in the Stokes flow problem that they solved. Rapid convergence is

necessary for this method since the global system must be solved for each penalty

iteration. Since this solution is the most expensive part of the solution, if more than

two or three iterations are used, the cost advantages of the penalty method are lost.

Table 9. Sensitivity of Uzawa to changes in e.

e Subiterations Rate of Decrease in
to convergence Discrete Divergence

1.0 X 10.13 1 One order of magnitude
per subiteration

3.0 X 10-1 s  5-7 18% decrease per
subiteration

1.0 X 10-12 10 10% decrease per

subiteration

Initial testing of the Uzawa algorithm showed very good results for short

periods of time. The value of e greatly affected the performance of the algorithm.

On a benchmark plume problem with a 15 X 20 grid and At = .0003 (50 steps) for the

Tamb = 25C parameters, e = 1.0 X 10-12 required ten iterations per time step to reduce

the discrete divergence to O(e). On the same problem, e = 3.0 X 10-13 required

between 5 and 7 iterations per time step while e = 1.0 X 10-13 required only one

iteration. This sensitivity is also reflected in the rate of convergence. When the e
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1.0 X 10-1s case required more than one iteration (after 100 time steps), only two or

three iterations were required since the discrete divergence decreased by roughly one

order of magnitude per iteration. In contrast, the e = 3.0 X 10-13 case saw a decrease

in discrete divergence of about 18% per iteration while the e = 1.0 X 10.12 case

droppped by about 18% per iteration . These results are summarized in table 9.

These observations are consistant with results reported by Pelletier, et al. (1989) and

Fortin and Glowinski (1983). The rapid convergence for small e also confirmed that

the coding modifications for the Uzawa algorithm were correct.

Extensive testing of the Uzawa algorithm for the plume problem, however,

consistently demonstrated that the performance deteriorated as time progressed.

Simulations that started with ony one or two Uzawa iterations per time step would

often required 4 or 5 after 100-200 time steps. A typical case was a simulation of the

Tamb = 25C experiment on a 25 X 30 grid with At = .01. The first 70 time steps

usually required only one Uzawa iteration; only on 3 occasions were 3 iterations

used. The subsequent 50 time steps, however, required 5 or 6 iterations per time step.

Table 10. Change in convergence rates in Uzawa.

Time Step Subiteration Discrete Divergence

100 1 6.944 X 10-10

2 6.051 X 10"'3

150 1 3.656 X 10-8

2 6.218 X 10.10

3 3.992 X 10.10

4 3.921 X 10.10

5 3.920 X 10 "'°

6 3.856 X I0 " °
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This excessive number of Uzawa iterations makes this method less efficient than the

integrated FEM. For this case, 120 steps using the Uzawa algorithm required 48

minutes of cpu time; the identical case ran 500 steps using the integrated method in

just 68 minutes. Table 10 illustrates how the rate of convergence changes as the time

integration progresses. Note that these results are for another sample case where a

15 by 20 grid was used for the Tamb = 0.1C case and e = 1.0 X 10-13. These results are

presented graphically in figure 18. Since the convergence was highly dependent on

the choice of e, and a single, acceptable value for e was never determined. These

results coincide with comments made by Fortin and Glowinski (1983) for similar

nonlinear problems. Without an adequate choice of e, the convergence was too slow

to be economical when compared with the mixed method. These poor results led to

abandonment of this technique as described here. Other similar methods, perhaps

involving an automatic choice of e, may be more effective in the future.

4.9.5 Multistep Newton Method

NACHOSII uses Newton's method to solve the nonlinear system of algebraic

equations that are formed in the FEM (equation (43)). Newton's method gives

quadratic convergence to the solution provided that the initial guess is close enough

to the solution. Since NACHOSII uses a predictor/corrector type time integration

(either forward/backward Euler or Adams-Bashforth/trapezoid integration), the

predicted solution value will generally be close to the correct solution for each time

step. This assumption provides the basis for NACHOSII to use a one-step Newton

method for the solution of the nonlinear system. This method is justified, with

examples given, in Gresho, Lee, and Sani (1980).

The modification made to NACHOSII is a simple extension of the base logic.

After the first Newton iteration, the discrete divergence is used as a test of

convergence. If the discrete divergence is too large, complete another Newton
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Figure 18. Discrete divergence for Uzawa method.
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iteration and check the divergence again. Repeat until the discrete divergence is

small enough.

This method gave acceptable results, as reported in the next section. Since

most time steps normally required only one Newton iteration, the additional cost was

not significant compared to the original one-step Newton method. Typically, those

time steps requiring additional Newton iterations needed only two or three iterations

to reduce the discrete divergence to a small value. A plot of discrete divergence

versus time for this method is given in figure 19 for a 15 X 50 grid in the T,b =

0.C case. Table 11 illustrates the rate of convergence for this method when multiple

subiterations per time step arc required.

4.10 Application to Plume Problem

The arguments and computational data presented above suggested that the

Table 11. Typical convergence for multistep Newton method.

Subiteration Discrete Divergence

1 3.31 X 10-9

2 3.81 X 10-12

best approach available for solving the plume problem was to use a QUAD8 element

with discontinuous pressure approximation in a mixed FEM that employed a

multistep Newton method to solve the nonlinear matrix problem. The gjal of this

numerical work was to develop a model that would predict the laboratory plume

behavior. The following results will show that this method ga%e a very accurate

prediction of the laboratory results.

4.10.1 Ambient Temperature = 25C

The mesh used for the simulation was a 15 X 50 (figure 20a). The node
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92

spacing in the radial direction was most dense near the axis of the heater; the node

spacing in the height direction was even. For all cases, the maximum element size

and time step was determined by the fundamental length and time scales used or the

problem. Based on the theoretical accuracy of the FEM, these choices also insured

that the numerical resolution was greater than the error in the experimental

measurements. The heater was represented by specifying the heat flux along the

bottom of the first four elements. Euler time integration (forward Euler

predictor/backward Euler corrector) was used early in the problem since its damping

characteristics removed temporal oscillations in the solution during the rapid heater

initiation (the trapezoid method, in contrast, has no damping characteristics).

Smaller time steps were used during this time due to the reduced accuracy of Euler

integration compared to trapezoidal integration. Later in the problem, larger time

steps were used when the second-order time integration method (Adams-Bashforth

predictor/trapezoid corrector) was used.

The best tool for plume visualization is temperature contours, or isothermal

lines. Some typical plots are given in figure 20b. These plots also provide the most

effective way to compare the numerical results with the experimental results. Figure

20c shows the results of plotting the height versus time for the top of the ball for the

experimental data (top plot) and the numerical results (bottom plot). For this plot,

the top of the plume was defined by the T = 25C contour. The numerical plot is

shifted later in time when compared to the experimental plot due to the slower

heater start-up. Note that both plots display a relatively constant speed throughout

most of the flight. For the experimental data, this average speed is .055 cm/sec; for

the numerical simulation, this average speed is .056 cm/sec. These results agree

within the error tolerance of the experimental data.

4.10.2 Ambient Temoerature = 0.1C
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A 15 X 50 mesh similar to the Tsnb, 2 5C case was used for this case (figure

2 1a). Note that the grid is placed on the same physical dimensions as the T.b - 25C

grid. The coordinate values are different due to the change in the length scaling.

The element spacing in the radial direction is different from the T.Mb = 25C case.

This spacing was chosen to place smaller elements near the border of the larger ball.

The same time-integration approach was used for this case also. The only difference

between this case and the previous case was in the heater start-up. A time-dependent

heat flux boundary condition was used along the bottom of the first three elements.

The heat flux was increased gradually over a time period of 1.3 hours to the full

power used in the experiment. This gradual increase, along with the damping from

the Euler time integration, smoothed large temporal oscillations in the early steps of

the solution. This slow heating also shifted the plots of height versus time further

apart than in the Tamb= 2 5C case (figure 21c). For this plot the top of the plume was

defined by the T = 15.4C contour. The average speed results, however, agree to

within experimental accuracy--the speed of the experiment was .0055 cm/sec and the

numerical results gave .0053 cm/sec. Figure 21b shows typical temperature contour

plots.

4.10.3 Ambient Temperature = -26.1C

No successful runs were completed for this case. The difference between the

size of the terms of the global matrix corresponding to viscous forces (matrix K in

equation (42)) created too much round-off error and let to ill-conditioning errors in

the solution. This difference is not due to scaling as discussed earlier, but due to the

wide variance in the value of viscosity between fluid inside and outside the plume.

The difference was as high as 107 for this case.

A method that may have promise for resolving this problem in the future has

been suggested by Pelletier et. al. (1989). They suggested scaling the matrix
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equations on an element level. This scaling could show a similar improvement as the

global scaling of the full equations did in the earlier discussion.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Experimental Study

The experiment described in chapter 2 explored the interaction of buoyancy

and diffusion at higher viscosity contrasts than earlier studies. Although the method

of plume generation (heater) differed from the related experiment (injection of

warmer fluid) of Griffiths and Campbell (1990), the plume structure appears to be

dynamically similar to their results. The experiment, then, may be viewed as an

extension of their work to larger viscosity contrasts.

The results of the experiment (figures 4a, 5a, and table 3) demonstrated that

previous analytical models are inadequate for describing the motion of the ball. The

flow structure of the Tamb = -26.IC case (figure 6b) suggested that heat loss from the

ball is an important factor that may account for some of the discrepancies in the

earlier models.

Two improvements in the experimental apparatus and procedure would make

the study more effective. First, a more powerful heater would provide the ability to

study the effects of heater power on the plume structure and speed. The heater used

in the experiment of chapter 2 required full power to produce the tracer bubbles.

Second, accurate temperature measurements would improve the utility of the results

markedly. Measurement of the temperature of the heater surface would indicate

what rate of heater startup should be used in the numerical model. The temperature

101
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on the ball perimeter would indicate which temperature contour in the numerical

model to use to mark the plume boundary. These improvements would allow for

more accurate comparison of the experimental results with the numerical model.

5.2 Analytical Modelling

The efforts in analytical modelling focused on refining the Griffiths and

Campbell (1990) model by adding the effects of thermal detrainment. The relative

amount of mass entrainment and heat loss was varied by introducing a heat loss term

that depends on a parameter 03. For all finite values of this parameter, the new

model is more effective in modelling the experiment than previous models.

The next steps in improving the analytical model will involve relaxing the

assumption that heat loss in the conduit is negligible and refining the relationship

between the entrained fluid layer and the thermal boundary layer. Calculations of

heat flux from the numerical models suggest that the heat loss in the conduit may be

as large as 30% of the heat loss from the ball. This percentage will increase as the

conduit length grows. Adding this effect to the energy equation in chapter 2 will

improve the accuracy of the model, particularly for longer flight times. Recall that

to develop the relationship in equation (16), we assumed a linear temperature profile

through the thermal boundary layer. Making this profile more realistic will result in

algebraic complication, but may also improve the model.

5.3 Numerical Modelling

By reducing the round-off error and using the discrete-divergence as a

diagnostic to choose the best element/interpolation combination, numerical results

that agreed with the experimental data to within the experimental errors were found

for two experimental cases by making a small modification to the nonlinear matrix
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solution procedure. In the Tnb - 0.1C case, the viscosity contrast of 105 was higher

than in previous numerical studies of plumes. These improvement, however, did not

allow successful simulation of the Tamb m -26.1C case due to the large differences in

the magnitude of elements of the diffusion matrix K because of the large viscosity

differences.

The successful simulations in the T.ab = 25C case and the Tb = 0.1C case

will serve a benchmark runs for future improvements in the method of numerical

solution. Improvement efforts will concentrate on modelling larger viscosity

contrast and in making the solution more efficient. The use of element matrix

scaling may reduce the large discrepancies in the size of the elements of the

diffusion matrix. A more sophisticated augmented-Lagrangian method may reduce

the computational time required for the problem. Finally, since we know roughly

where the large temperature gradients are as the plume develops, some method of

moving a fine grid with the ball and neck would reduce computational time

significantly.

An improved numerical model will allow more detailed applications of

numerical experiments in wider parameter ranges than the laboratory allowed. For

example, running a numerical simulation in a taller tank will help determine if the

new analytical model continues to work well for long flight paths. By developing

better flow visualization tools for this problem (e. g., some way of indicating streak

lines), we should be able to find a way to measure the relationship between the

thermal and fluid boundary layers, and thus determine 0 from numerical

experiments. The overall goal of the future application of an improved numerical

model is to simulate mantle plumes and thus test the analytical results in this case.



APPENDIX

FINITE-ELEMENT EQUATIONS FOR THE THERMAL PLUME PROBLEM

Substitute the interpolation expressions for velocity, pressure and

temperature into the governing equations (32) - (36).

Momentum:

a 4 . -6T(1W -L77 at-)

ax &J (A 1)

+ a -o - ,,(C,7 -fT

Continuity:

a =0 * o (A2)

Energy:

6c7{xT TT (A3)

The Galerkin FEM minimizes the residuals by making them orthogonal to the

interpolation functions. Take the inner product of equations (Al)-(A3) with the
104
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interpolation functions to get

Momentum:

-- - o - 
+ .(A4)

&J ) &J ai

-f (I6 f TdrOP (f DpgQa -f

•(fV):O-/'d)

Continuity:

-(fo ,~a - ('

Energy:

() ( , ij ) (A6)

(fa ax, ax,

In arriving at equations (A4)-(A6), we used the divergence theorem to reduce the

second-order diffusion terms in (Al) to first-order terms plus a boundary integral.

We also allow the variable material properties in (A4)-(A6) to have explicit

spatial variation within an element as follows:
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P,(: ; = Vww*) (

k(x1 t) - (x,)(t)
,,(x,t) -, ,V:(X .) -(t)

where Y is an interpolation function and the A quantities are vectors of nodal point

material properties. Since the dependent variables are known at the nodes, this is an

effective means of evaluating material property values.

The integrals in (A4)-(A6) may be evaluated via numerical quadrature to

produce coefficient matrices for the following system:

Momentum and Continuity:

(Oo 0' 0" r +a C2(112) 0 Op

+ K2

_ 0 T  * Jl) I, 6)

Energy:

N-- + [D(C) - D(a2)]T + [L. i-jT = G(- (A8)

where

M fp6irdO
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CA) - f ,UT'8dO

axax,

= axi

F()=fpg,V- &4'dO (f - f.

N =fpc,§TdQ

;§T

a ax 1

Cuf~qjndr

For this problem, if we separate the buoyancy expression from the general force
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vector in F, we can write (A7) and (A8) as

MPL C(U)O - Qf. K(Ig)U •(IVT- Pat

NL - OD(U) L(7) =- (U)

where

and

ff f f.pt' Of - :F..)
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